Semi-Supervised Selective Affinity Propagation Ensemble Clustering With Active Constraints
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Affinity Propagation with Instance-Level Constraints
Recently, affinity propagation (AP) was introduced as an unsupervised learning algorithm for exemplar based clustering. Here we extend the AP model to account for semisupervised clustering. AP, which is formulated as inference in a factor-graph, can be naturally extended to account for ‘instancelevel’ constraints: pairs of data points that cannot belong to the same cluster (cannotlink), or must...
متن کاملProbabilistic Semi-Supervised Clustering with Constraints
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn th...
متن کاملSemi-Supervised Active Clustering with Weak Oracles
Semi-supervised active clustering (SSAC) utilizes the knowledge of a domain expert to cluster data points by interactively making pairwise “same-cluster” queries. However, it is impractical to ask human oracles to answer every pairwise query. In this paper, we study the influence of allowing “not-sure” answers from a weak oracle and propose algorithms to efficiently handle uncertainties. Differ...
متن کاملActive semi-supervised fuzzy clustering
Clustering algorithms are increasingly employed for the categorization of image databases, in order to provide users with database overviews and make their access more effective. By including information provided by the user, the categorization process can produce results that come closer to user’s expectations. To make such a semi-supervised categorization approach acceptable for the user, thi...
متن کاملSemi-supervised Clustering Ensemble by Voting
— Clustering ensemble is one of the most recent advances in unsupervised learning. It aims to combine the clustering results obtained using different algorithms or from different runs of the same clustering algorithm for the same data set, this is accomplished using on a consensus function, the efficiency and accuracy of this method has been proven in many works in literature. In the first part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2978404